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We survey techniques for constrained curve fitting, based upon Bayesian statistics, that offer significant advan-

tages over conventional techniques used by lattice field theorists.

1. INTRODUCTION

With recent developments in lattice QCD, a
wide range of high-precision calculations is now
possible. To achieve high precision we need tight
control of all the systematic errors inherent in the
analysis of simulation data. A particularly irri-
tating source of such systematic errors has been
curve fitting, which plays a central role in almost
all applications of lattice simulations.

Lattice theorists use curve fitting in many dif-
ferent ways: we use it, for example, to extract
hadronic masses and matrix elements from Monte
Carlo estimates of correlators, to extrapolate
light-quark masses to physical values, and to fit
short-distance Monte Carlo results to perturba-
tive expansions. In each such case the theory we
fit to Monte Carlo data has an infinite number of
parameters. In order to fit such a theory using a
finite amount of data, we normally truncate both
the data set and the theory. Thus we might re-
tain only data for the smallest quark masses, and
extrapolate linearly to physical masses. Or we
might fit only the large-t behavior of a hadronic
correlator, ignoring contributions from all but the
lowest-mass hadron. Such truncations are usu-
ally necessary to obtain good fits with reasonable
error estimates for the fit parameters, but they

necessarily increase both the statistical and sys-
tematic uncertainties in the results. Statistical
uncertainties are increased because Monte Carlo
data is discarded. Systematic uncertainties are
introduced by omitting parts of the theory that
could conceivably be significant. Such systematic
effects have proven particularly difficult to esti-
mate in past analyses, and these are the principle
focus of this article.

In this paper we show how to circumvent the
shortcomings of the traditional approach by using
constrained curve fitting, a simple modification
of standard maximum likelihood techniques [1].
Constrained curve fits, while widely used in other
research areas, are not used much by the lattice
QCD community. Here we will show how they can
be adapted for use in lattice calculations, and we
will document their striking advantages over tra-
ditional methods. Constrained curve fits provide
an elegant procedure for incorporating systematic
uncertainties due to underconstrained parts of a
theory (high-energy states, for example). Fur-
thermore they allow us to fit much more data—
for example, correlators down to t = 0. And they
are numerically more robust than unconstrained
fits. Finally the formalism for constrained curve
fitting can be used to estimate the lattice spacings
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and quark masses that will minimize the errors in
a large-scale simulation.

2. CONSTRAINED FITS

2.1. The Problem

The central problem is illustrated by the analy-
sis of a meson correlator. Simulations generate a
Monte Carlo estimate, G(t), of the correlator for
a finite number of time steps, say t = 0, 1 . . .23.
Theory tells us that the exact correlator has the
form

Gth(t; An, En) =

∞
∑

n=1

An e−Ent, (1)

where we assume that the energies En are in or-
der of increasing size. The challenge is to fit an
infinite number of amplitudes An and energies En

using only 24 G(t)’s.
Traditional fits minimize χ2(An, En) by vary-

ing An and En, where

χ2(An, En) ≡
∑

t,t′

∆G(t) σ−2
t,t′ ∆G(t′), (2)

and

∆G(t) ≡ G(t) − Gth(t; An, En). (3)

The correlation matrix is estimated from the
Monte Carlo:

σ2
t,t′ ≡ G(t)G(t′) − G(t) G(t′). (4)

Unfortunately this fitting procedure is singular
here since there are more fit parameters, An and
En, than data; the final uncertainties in the fit
parameters are infinite. Additional information
is needed if we are to proceed.

The information we normally add is that the
An’s are well behaved, and therefore contribu-
tions from high-energy states are suppressed at
large t by the exponentials in the correlator,
Eq. (1). Thus there is a tmin above which only
the first one or two terms in Gth make statisti-
cally significant contributions. The standard pro-
cedure therefore is to retain, say, only the first two
terms in Gth and to fit them using only Monte
Carlo results from t ≥ tmin. The trick is to find
the best tmin. Choosing tmin too small biases the
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Figure 1. Fit values for the lowest two energies
from a 2-term fit to a local-local Υ correlator
using different tmin’s. The correct values, from
other analyses, are indicated by the dotted lines.

En’s and An’s away from their true values, in-
troducing systematic errors (because two terms
is not enough in Gth). Choosing tmin too large
gives statistical errors σEn

and σAn
that are too

large, since useful data is discarded. One typi-
cally tries to increase tmin until the statistical er-
rors mask any possible systematic error. Without
a reliable quantitative estimate of the systematic
error, however, any procedure for setting tmin is
necessarily ad hoc.

To illustrate the dependence on tmin, we plot
results for E1 and E2 from 2-term fits with var-
ious tmin’s in Fig. 1. The Monte Carlo data for
these fits was obtained by averaging 840 Υ corre-
lators evaluated at (quenched) β = 6 with local
sources and sinks [2]. The competition between
large systematic errors for small tmin and large
statistical errors for large tmin is particularly ap-
parent for E2 in this plot.

2.2. A Solution

Our goal should be to fit all the Monte Carlo
data (tmin = 0) using as many terms as we wish
in Gth. As we add more terms to Gth, how-
ever, the errors on the leading parameters grow
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Figure 2. Fit values for the two lowest energies
from unconstrained fits with different numbers of
terms in Gth. The correlator is a local-local Υ
correlator and is fit for all t’s.

steadily in a traditional analysis, as is evident in
Fig. 2. The reason is easily understood. The
large uncertainties in E1 and E2 for the 8-term
fit, for example, result because the parameters
for higher-energy states are poorly constrained by
the data and therefore wander off to unphysical
values. Thus amplitude A4 ranges between five
and ten times A1 in the 8-term fit, while quark
models suggest that A4 is of order A1 or smaller.
Since the allowed range for A4 affects the error
estimates for other parameters, the errors on E1

and E2 will be unreasonably large so long as the
fitting code assumes that A4 ≈ 10A1 is plausible.
We need some way to teach physics to the fitting
code.

To constrain fit parameters to physically rea-
sonable ranges, we augment the χ2 before mini-
mizing:

χ2 → χ2
aug ≡ χ2 + χ2

prior, (5)

where

χ2
prior ≡

∑

n

(An − Ãn)2

σ̃2
An

+
∑

n

(En − Ẽn)2

σ̃2
En

. (6)

The extra terms in χ2
aug favor An’s in the inter-
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Figure 3. Fit values for the two lowest energies
from constrained fits with different numbers of
terms in Gth. The correlator is a local-local Υ
correlator and is fit for all t’s.

val Ãn ± σ̃An
and En’s in Ẽn ± σ̃En

. The Ãn’s,
σ̃An

’s . . . are inputs to the fitting procedure. We
choose reasonable values for them on the basis of
prior knowledge. This set of input parameters is
referred to collectively as the “priors.”

Having chosen the priors, the procedure for a
constrained fit is to minimize χ2

aug fitting all of
the Monte Carlo data (tmin = 0). The number of
terms in Gth is increased until fit results converge
for the parameters of interest. Unlike tmin, the
number of terms in Gth need not be optimized; it
is simply increased until results converge. This is
illustrated by fit results for E1 and E2 from our
Υ data, which are plotted in Fig. 3 for fits with
different numbers of terms.

The numerics are greatly improved by the con-
straints. For example, one can easily fit 100 terms
in Gth to the Υ data, even though there are only
24 data points. The fit results for all but the first
few parameters simply reproduce the prior infor-
mation in such a highly overparameterized fit.

The error estimates for the fit parameters in
our Υ fits automatically combine both the sta-
tistical errors in the Monte Carlo data, and the
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systematic errors due to our limited knowledge,
as specified by the priors, about the poorly con-
strained high-energy states. To see how much er-
ror is due to each source we refit with all σ̃’s dou-
bled. Results for the energies change as follows:

E1 = 0.4526(15) → 0.4528(14)
E2 = 0.683(49) → 0.697(50)
E3 = 1.05(12) → 1.10(21).

(7)

Evidently E1 and E2 are determined largely by
the Monte Carlo data, while E3 is strongly af-
fected by the priors. The insensitivity of the lead-
ing parameters to the priors is typical for high-
quality data. The result for E2 is impressive given
that it comes from a single local-local correlator.
(It also agrees with results obtained from multi-
source/sink fits [2].)

We actually parameterized our Υ fits in terms
of parameters an ≡ log An and εn ≡ log(En −
En−1). This parameterization builds in a pri-

ori requirements, An > 0 and En > En−1, which
improve the fits. Using previous simulations
as a guide, we chose priors that favored an ≈
log 0.02 ± log 2 and εn ≈ log 0.2 ± log 2 or:

An ≈ 0.02
+0.02
−0.01

En − En−1 ≈ 0.2
+0.2
−0.1

. (8)

Our best 5-term fit to the Υ data is shown in
Fig. 4, together with the data. The fit is excellent
all the way down to t = 0: the minimum χ2

aug di-
vided by the number of data points is 0.8. (This
is the correct ratio to examine since χ2

aug has one
extra term beyond those in χ2 for each fit pa-
rameter.) While χ2, Q, etc. play a crucial role
in traditional fits, where tmin must be optimized,
they are of secondary importance in constrained
curve fitting. The key criterion is convergence as
the number of parameters is increased. If χ2

aug

per data point is significantly larger than 1 af-
ter convergence, then there is likely a mistake in
either the data or the theory.

We have experimented with constrained fits for
a wide variety of other correlators, including fits
of 30–40 parameters for 4 × 3 matrix G’s, simul-
taneous fits of multiple channels (e.g., π and ρ),
static potentials and glueball masses, and corre-
lators involving staggered quarks. All work well.

t
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Figure 4. The constrained 5-term fit to the local-
local Υ correlator. The statistical errors in the
data points are too small to be resolved in the
plot.

In some cases fits are greatly simplified. An ex-
ample is the fit shown in Fig. 5 for a B meson cor-
relator made from an NRQCD propagator for the
b quark and a staggered quark propagator for the
d quark [3]. Such fits are complicated by contribu-
tions from opposite parity states, introduced by
the staggered quarks, that oscillate with an over-
all factor (−1)t. Traditional fits have difficulty
quantifying the importance of these contributions
since they are small at large t. Constrained fitting
down to t = 0, however, makes it easy to account
and correct for them.

3. THEORY AND INTERPRETATION

3.1. Bayesian Statistics

Bayesian statistics provides a useful frame-
work for understanding the assumptions that go
into constrained curve fitting [4]. In this ap-
proach the analysis is recast in terms of proba-
bilities: P (A|B) denotes the probability that A
is true or correct assuming B is true. For com-
pactness we denote the set of all parameters by
ρ = {A1, E1 . . .}, the set of prior parameters by
η = {Ã1, σ̃A1

. . .}, and the Monte Carlo data
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B(0+): 1.442(34)

B′(0−): 1.340(39)

B(0−): 0.899(17)

t

G
(t

)

1086420

10

1

0.1

0.01

0.001

0.0001

Figure 5. A constrained fit to a local-local B me-
son correlator made with NRQCD and staggered
quark propagators. The energies of the three
lowest-energy states are listed in lattice units.
The statistical errors in the data points are too
small to be resolved in the plot.

by G.
We begin with two assumptions. The first is

that the Monte Carlo data set is sufficiently large
that G has Gaussian statistics (Central Limit
Theorem). Then the probability density for ob-
taining a particular G given a particular theory,
specified by ρ, is

P (G|ρ) ∝ e−χ2(ρ)/2 (9)

where χ2 is defined as in Eq. (2).1

What we need ultimately is the probability that
a particular set of parameters ρ is correct given
the Monte Carlo data— that is, we need P (ρ|G),
not P (G|ρ). P (ρ|G) is connected to P (G|ρ) by
Bayes Theorem:2

P (ρ|G) =
P (G|ρ)P (ρ)

P (G)
∝ P (G|ρ)P (ρ). (10)

1This is not strictly correct since the correlation matrix
σ2

t,t′
in χ2 will in general depend upon ρ, while in practice

we use a fixed Monte Carlo estimate of it.
2This formula follows from the trivial identity for proba-
bilities: P (ρG) = P (G|ρ) P (ρ) = P (ρ|G)P (G).

Here P (G) is the probability of obtaining a par-
ticular G from any theory; it is ρ independent.
More important is P (ρ) which is the probability
that a particular set of parameters ρ is correct in
the absence of any new data. It contains what
we know about the parameters before we begin
the fit. This is called the “prior” distribution, or
simply the prior.

Our second assumption is that the prior distri-
bution can be approximated by the Gaussian

P (ρ) = e−χ2
prior(ρ)/2 (11)

where χ2
prior is defined as in Eq. (6). The a priori

assumption therefore is that ρi ≈ ρ̃i ± σ̃ρi
. With

this assumption our final probability function is

P (ρ|G) ∝ e−χ2
aug(ρ)/2 (12)

where χ2
aug is the augmented χ2 introduced in

Section 2.2.
The choice of a Gaussian for the prior distribu-

tion is arbitrary; other choices might well be ap-
propriate. There is, however, an argument that
suggests Gaussians. Beyond specifying an aver-
age value for each parameter and a standard de-
viation, we want the prior distribution to be as
unbiased as possible. In general the least biased
choice for a probability density is the one that
minimizes the information content, or, equiva-
lently, maximizes the entropy,

S ≡ −
∫

P (ρ) log P (ρ) dρ. (13)

Given the constraints 〈ρ〉 = ρ̃ and 〈ρ2〉 − 〈ρ〉2 =
σ̃2, a simple variational calculation shows that
the entropy is maximized by the Gaussian

P (ρ) =
1√
2πσ̃

e−(ρ−ρ̃)2/2σ̃2

. (14)

This argument is less compelling than it seems,
however, because it relies upon the implicit (and
arbitrary) assumption that all ρ’s are equally
likely in the absence of any information about the
mean or standard deviation. A different parame-
terization implies a different assumption.

3.2. Error Estimation

Given P (ρ|G) we can compute everything we
want to know using integrals; in principle no min-
imization is needed. For example, we obtain a
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statistical estimate of an arbitrary function of the
parameters using

〈f(ρ)〉 = B−1

∫

e−χ2
aug(ρ)/2 f(ρ) dnρ (15)

where

B ≡
∫

e−χ2
aug(ρ)/2 dnρ, (16)

and the variance is σ2
f ≡ 〈f2〉 − 〈f〉2, as usual.

In practice these integrals are quite difficult to
evaluate for all but the simplest of fits. This is
because P (ρ|G) is typically very sharply peaked
about its maximum. For smaller problems, adap-
tive Monte Carlo integrators, such as vegas, are
effective. For larger problems Monte Carlo sim-
ulation techniques, such as the Metropolis or hy-
brid Monte Carlo methods, can be effective. Still
the cost of evaluating the integrals is often pro-
hibitive, particularly when there are lots of poorly
constrained parameters (which lead to long, nar-
row, high ridges in the probability distribution).
Consequently efficient approximations are useful.

One approximation assumes that enough
statistics have been accumulated so that χ2

aug(ρ)
is approximately quadratic in the ρ’s throughout
the dominant integration region:

χ2
aug(ρ) ≈ χ2

aug,min+
∑

(ρ−ρ∗)i(ρ−ρ∗)jC
−1
ij (17)

where parameters ρ = ρ∗ minimize χ2
aug. In this

quadratic limit we can approximate

〈f(ρ)〉 ≈ f(ρ∗), σ2
f ≈

∑

Cij ∂if(ρ∗) ∂jf(ρ∗)(18)

provided f(ρ) is sufficiently smooth as well. This
is the constrained curve fitting procedure outlined
in Section 2.2.

A different, more robust approximation to the
Bayesian integrals uses a bootstrap analysis, suit-
ably modified to account for the prior distribu-
tion [5]. A bootstrap analysis generates an en-
semble of ρ’s whose distribution approximates the
Bayesian distribution P (ρ|G). Each ρ in this en-
semble is obtained by minimizing χ2

aug, but with
different Monte Carlo data and different means
for the priors for each ρ. We replace G in χ2

aug

by the average of a random selection of G’s, al-
lowing duplicates, from the original Monte Carlo

data ensemble, just as in the standard bootstrap
method. The new means, ρ̃′i, for the priors are
random numbers drawn from a Gaussian distri-
bution with mean ρ̃i and standard deviation σ̃ρi

.
The new means incorporate the effects of the pri-
ors into the bootstrap ρ distribution. Given 100
or 1000 ρ’s generated in this fashion, we then av-
erage over the ensemble to compute estimates of
any function f(ρ). Although this procedure en-
tails a minimization for each ρ in the ensemble,
we find that is generally much faster than Monte
Carlo evaluation of Bayes integrals (Eq. (15)).

The distribution obtained from this modified
bootstrap algorithm is not precisely the Bayes
distribution P (ρ|G). It has additional factors
such as

√

det gij where

gij ≡
∑

t,t′

σ−2
t,t′

∂G(t; ρ)

∂ρi

∂G(t′; ρ)

∂ρj
(19)

is a metric induced on ρ space [5]. These factors
become constants for sufficiently high statistics
and so make no difference in that limit. This
particular factor is interesting, however, because
it makes the measure in ρ space invariant under
reparameterizations. This suggests that

P ′(ρ|G) ∝
√

det gij e−χ2
aug/2 (20)

might be a better choice for our Bayesian prob-
ability. Then only χ2

prior would depend upon the

parameterization of Gth, and χ2
prior usually has

little influence on the best-determined fit param-
eters.

4. OTHER APPLICATIONS

One approach to evaluating high-order QCD
perturbation theory is to simulate the quantity
of interest at high β’s, where QCD is perturba-
tive, and fit perturbative expansions to the re-
sults. An example, from [6], is the 5 × 5 Wil-
son loop, W (5, 5), which was measured in Monte
Carlo simulations with 9 different lattice spac-
ings that gave couplings αP (3.4/a) covering the
range 0.01–0.07. The measured values of W (5, 5)
were fit using an expansion

− 1
20 log W (5, 5) =

M
∑

n=1

cnαn
P (q∗) (21)
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c1 c2 c3

fit: 1.7693(6) −1.201(40) 4.3(7)
exact: 1.7690 −1.177

c4 c5

fit: 0.7(4.9) 0.1(5.0)
exact:

Table 1
Perturbative coefficients for W (5, 5) as deter-
mined from fits to high-β simulations, and exactly
from Feynman integrals. Refitting with c1 and c2

held at their exact values gives c3 = 3.91(21).

where q∗ = 2.23/a and M ≥ 5. Priors c̃n = 0 and
σ̃cn

= 5 were used in the fits to obtain the results
in Table 1 (for M = 5). The agreement with exact
results is excellent. Refitting with c1 and c2 set
equal to their exact values gives c3 = 3.91(21),
which agrees well with the result in Table 1 but
which is much more precise.

The errors for the cn’s again include both sta-
tistical errors, reflecting the precision of the data,
and systematic errors, reflecting the degree of our
ignorance of higher-order coefficients. The low-
order coefficients (n ≤ 3) are largely determined
by the Monte Carlo data; their values and errors
are essentially unchanged if the σ̃cn

’s are doubled,
or if M is doubled. The high-order coefficients
are controlled mostly by the priors. Were we to
increase the statistics, more cn’s would be deter-
mined by the data. Thus the effective order of
the fit increases automatically as warranted by
the statistics. This is one of the most attractive
aspects of constrained fitting: We don’t have to
agonize about whether a fit should be linear or
quadratic or. . . ; instead we set M = 10 and allow
the data to tell us how much it can determine.

Similar issues arise in extrapolations, for exam-
ple, to the chiral mass limit or to zero lattice spac-
ing. By using constrained fits, we can escape the
limitations of linear or quadratic extrapolations.
Instead we can include many orders, with con-
strained coefficients, and allow the Monte Carlo
data to determine the relevant order automati-
cally. (See [6] for an illustration of an extrapola-
tion in lattice size L.)

5. VARIATIONS

5.1. Optimizing Simulations

In our numerical fits of perturbation theory to
simulation data (Section 4), the final errors for
the various perturbative coefficients, cn, are af-
fected by the αP ’s at which we chose to simu-
late. Our fitting formalism can be used to de-
termine the choice of αP ’s that minimizes these
errors, thereby optimizing the simulation [6]. To
illustrate how this is done, we consider a simpler
problem. We measure a quantity w whose per-
turbative expansion is

w = 1 + c1αP + c2α
2
P + · · · . (22)

For simplicity we ignore all terms beyond second
order, and we limit ourselves to a single measure-
ment of w. The challenge is to determine which
value of αP (and therefore which lattice spacing)
will lead to the smallest errors when we determine
c1 from a Monte Carlo measurement, w ± σw,
of w. This error can be determined from the sec-
ond derivatives of

χ2
aug ≡ (1 + c1αP + c2α

2
P − w)2

σ2
w

+
c2
1 + c2

2

σ̃2
c

(23)

using Eqns. (17) and (18). The last term in this
equation is our prior; we expect cn ≈ 0 ± σ̃c. We
obtain the following formula for the fit error on
c1:

σ2
c1

=
(α4

P σ̃2
c + σ2

w)σ̃2
c

(α4
P + α2

P )σ̃2
c + σ2

w

, (24)

where we will assume that σw is independent
of αP (which is not true for Wilson loops, for
example, unless numerical roundoff errors domi-
nate). Note that σc1

→ σ̃c in either of the limits
αP → 0 or αP → ∞; we would learn nothing
new from a simulation in either limit. The error
is minimum at

α = α∗ ≡
√

σw/σ̃c, (25)

where ∂σc1
/∂α vanishes. At this value

σ2
c1

→ σ̃2
c

2σw

σ̃c + 2σw
. (26)

Thus α = α∗ is the preferred value for a simula-
tion; the optimal value depends upon the amount
of computing that is available (to reduce σw).
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The c1 error decreases like
√

σw as the simula-
tion error, σw , vanishes. This is rather slow; we
would prefer an error that vanishes like σw . At
some small value of σw it will be better to divide
the available computer resources between simula-
tions at two values of αP , rather than just one.
The analysis above can be repeated for this case,
to determine the two optimal αP ’s, and the re-
sulting σc1

can be compared with that above, to
determine when to switch from one αP to two.

Our simple analysis illustrates a generic design
step that should precede any large-scale simula-
tion in lattice QCD. By examining χ2

aug’s for im-
portant quantities, we can estimate the optimal
lattice spacings and quark masses that should be
used in the simulation before we simulate. Fur-
thermore we can estimate the optimal fraction of
the total computing resource to spend on each
case. Simulation costs should be significantly re-
duced by such optimizations.

5.2. Tuning Priors: Empirical Bayes

The denominator in the Bayes expression,
Eq. (10), is the probability of obtaining the Monte
Carlo average G given the prior information:

P (G) = P (G|η) ∝
∫

e−χ2
aug/2

∏

σ̃ρi

dnρ, (27)

which, in the Gaussian limit (Eq. (17)), becomes

P (G|η) ∝
√

detCij
∏

σ̃ρi

e−χ2
aug,min/2. (28)

This probability will be small if the priors are in-
consistent with the data. This suggests that one
might tune the prior parameters ηi to maximize
probability P (G|η), thereby determining the pri-
ors from the data. This is referred to as the “em-
pirical Bayes” method. It can be useful if only
one or two prior parameters is being optimized.
For example, when fitting the perturbation series
in Eq. (21), one might vary all the σ̃cn

’s together
to find the σ̃c that maximizes P (Gth|η). (Note
that the Gaussian approximation, Eq. (28), is ex-
act in this case). Then one would fit with all
σ̃cn

= σ̃c. Note, however, that separately opti-
mizing all ηi’s leads to complete nonsense.3

3The “best” fit is then the ρ that minimizes χ2 (not χ2
aug),

and the fit errors are zero!

5.3. Nonparameteric Fits and Maximum

Entropy

Bayesian methods have previously been used
for lattice data, and indeed for fitting correla-
tors [7]. The priors and parameterizations used
in these earlier papers, however, are quite differ-
ent from what we have discussed above. These
papers express the correlator in terms of its spec-
tral function, ρ(ω):

G(t) ≡
∫

dω e−ωt ρ(ω). (29)

The ω axis is divided into a large number of in-
crements, say 750 or 1000, with centers ωj , and
the integral is approximated by a sum. The fit
parameters are the values of ρ(ωj) for all j. This
is an example of a “nonparametric” fit. Peaks in
ρ(ω) signal bound states. Since the number of
fit parameters is typically (much) larger than the
number data points, a prior distribution is essen-
tial.

The Maximum Entropy principle provides a
framework for constructing priors for this pur-
pose. The spectral function shares several prop-
erties with probability densities: it has random
noise, ρ(ω) ≥ 0, and ρ(ω)dω is physically mean-
ingful. This suggests that we think of the spectral
function as a probability density. The most prob-
able density is the one with the largest entropy,
which suggests that we choose a monotonic func-
tion of the entropy as a prior: for example,

P (ρ) ∝ eα S(ρ) (30)

is maximum when the entropy S(ρ) is maximum.
Using a prior of this form we can fit all of the
ρ(ωj)’s to the Monte Carlo data. (Parameter
α can be optimized using the empirical Bayes
method; see the previous section.)

This algorithm has been used to fit the same Υ
data that we used for our constrained fits [8]. The
errors that result for the first excited state (E2)
are 2–3 times larger than we obtained from our
constrained fits in Section 2.2. This is not surpris-
ing. The maximum entropy prior contains far less
information than we included in the priors for the
constrained fits, and that is its weakness in this
context. One should use all the prior information
one has when fitting data. The maximum entropy
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prior is useful when there is little initial informa-
tion and no simple parameterization of the theory,
as is the case in image processing, for example.

6. CONCLUSION

Constrained curve fitting is a major improve-
ment over the traditional fitting procedures used
in lattice QCD analyses. Neither the data nor the
theory is truncated. Consequently more informa-
tion, about excited states or higher-order terms,
is extracted from the same Monte Carlo simu-
lations. Most importantly these techniques pro-
vide a transparent and controlled procedure for
including systematic errors due to the infinitely
many parameters in the theory that are not con-
strained by the Monte Carlo data. Constrained
curve fitting is useful for any kind of analysis that
involves correlators. It is also useful for extrapo-
lating to small quark masses or lattice spacings;
the order of extrapolation increases automatically
to match the statistical precision of the data. Fi-
nally we can use the formalism to estimate the
quark masses and lattice spacings that optimize
a large-scale simulation given a finite computing
resource.

Priors make some people uneasy because the
constraints are added information, beyond the
Monte Carlo data, that can bias the fit results.
Such people might argue that one should “let the
data speak for itself.” However, it is precisely our
ability to fold extra information into the fit that
makes constrained curve fitting so much more
powerful and useful than unconstrained fitting.
Better a priori knowledge, for example from ear-
lier analyses, results in smaller σ̃’s and smaller
systematic errors. No a priori knowledge, which
corresponds to the unconstrained case, (correctly)
results in infinite systematic errors. Traditional
fitting is a special case of constrained fitting, with
infinitely broad priors for the first few parame-
ters and infinitely narrow priors, centered around
zero, for the others. The priors we use in our
constrained fits are far more reasonable.
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